首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   539篇
  免费   93篇
  2021年   5篇
  2016年   5篇
  2015年   13篇
  2014年   20篇
  2013年   15篇
  2012年   26篇
  2011年   24篇
  2010年   16篇
  2009年   21篇
  2008年   5篇
  2007年   18篇
  2006年   18篇
  2005年   16篇
  2004年   18篇
  2003年   22篇
  2002年   20篇
  2001年   11篇
  2000年   23篇
  1999年   17篇
  1998年   8篇
  1997年   11篇
  1995年   9篇
  1994年   8篇
  1993年   9篇
  1992年   22篇
  1991年   13篇
  1990年   14篇
  1989年   21篇
  1988年   13篇
  1987年   14篇
  1986年   8篇
  1985年   12篇
  1984年   9篇
  1983年   9篇
  1982年   10篇
  1980年   4篇
  1979年   7篇
  1978年   11篇
  1977年   10篇
  1976年   9篇
  1975年   10篇
  1974年   6篇
  1973年   7篇
  1972年   13篇
  1971年   6篇
  1970年   6篇
  1969年   4篇
  1968年   5篇
  1967年   3篇
  1966年   5篇
排序方式: 共有632条查询结果,搜索用时 20 毫秒
11.
The composition and biosynthesis of glycoproteins, proteoglycans, and gangliosides have been studied in a clonal line of rat pheochromocytoma (PC12) cells. Glycoproteins account for approximately 78% of the glucosamine-labeled complex carbohydrates found in the culture medium, together with 17% chondroitin sulfate and 5% heparan sulfate. 10% of the glycoproteins but less than 1% of the proteoglycans are released by trypsin treatment of the cells, whose complex carbohydrates are composed of 93% glycoproteins, 1.3% chondroitin sulfate, 3.4% heparan sulfate, and 2.6% of mono- and disialogangliosides. Sequential lectin affinity chromatography and alkali treatment of glycopeptides prepared from the medium, trypsin-releasable, membrane, and cell-soluble glycoproteins demonstrated that in all of the subfractions large tri- and tetraantennary complex oligosaccharides account for 82 to 97% of those present in PC12 cell glycoproteins. Biantennary oligosaccharides account for approximately 2-6% of those in medium and trypsinate, as compared to 10-13% in the membrane and cell soluble glycoproteins, and there were large differences (ranging from 7 to 60%) in the proportions of biantennary oligosaccharides which are substituted by fucose on the core N-acetylglucosamine which is linked to asparagine. High mannose oligosaccharides are present predominantly in the cell membrane and soluble glycoproteins, where they account for 4 to 5% of the total glycoprotein labeling. In response to nerve growth factor (NGF), the PC12 cells extend long processes and acquire other properties similar to those of differentiated sympathetic neurons. Significant alterations were also observed in the complex carbohydrates of NGF-treated cells, the most striking of which were an almost 3-fold increase in labeled gangliosides and a 75% increase in trypsin-releasable glycoproteins. Cellular heparan sulfate decreased by 70% in response to NGF and increased by an equivalent amount in the culture medium, whereas an NGF-induced increase in chondroitin sulfate labeling occurred specifically in the cell membranes.  相似文献   
12.
Summary Blocks of breast tissue obtained during radical mastectomies from 23 patients with mammary gland carcinomas were used for cultivation in native-state, gel-supported histocultures. We show that the human mammary gland can be successfully maintained in this system so that normal epithelial breast structures proliferate and undergo differentiation for several weeks and a well-developed system of ducts and lobules is formed. Using antibodies to individual keratins 17 and 8 we have shown for the first time that ducts and alveoles developing in vitro undergo differentiation into the lining epithelium and myoepithelium in the same way as mammary gland epithelium in vivo. Growth of epithelial structures in vitro is also accompanied by the development of continuous basal membrane.  相似文献   
13.
DNA replication in eukaryotic cells is restricted to the S-phase of the cell cycle. In a cell-free replication model system, using SV40 origin-containing DNA, extracts from G1 cells are inefficient in supporting DNA replication. We have undertaken a detailed analysis of the subcellular localization of replication proteins and cell cycle regulators to determine when these proteins are present in the nucleus and therefore available for DNA replication. Cyclin A and cdk2 have been implicated in regulating DNA replication, and may be responsible for activating components of the DNA replication mitiation complex on entry into S-phase. G1 cell extracts used for in vitro replication contain the replication proteins RPA (the eukaryotic single-stranded DNA binding protein) and DNA polymerase as well as cdk2, but lack cyclin A. On localizing these components in G1 cells we find that both RPA and DNA polymerase are present as nuclear proteins, while cdk2 is primarily cytoplasmic and there is no detectable cyclin A. An apparent change in the distribution of these proteins occurs as the cell enters S-phase. Cyclin A becomes abundant and both cyclin A and cdk2 become localized to the nucleus in S-phase. In contrast, the RPA-34 and RPA-70 subunits of RPA, which are already nuclear, undergo a transition from the uniform nuclear distribution observed during G1, and now display a distinct punctate nuclear pattern. The initiation of DNA replication therefore most likely occurs by modification and activation of these replication initiation proteins rather than by their recruitment to the nuclear compartment.  相似文献   
14.
Developing thymocytes and some T-cell hybridomas undergo activation-dependent programmed cell death. Although recent studies have identified some critical regulators in programmed cell death, the role of cell cycle regulation in activation-induced cell death in T cells has not been addressed. We demonstrate that synchronized T-cell hybridomas, irrespective of the point in the cell cycle at which they are activated, stop cycling shortly after they reach G2/M. These cells exhibit the diagnostic characteristics of apoptotic cell death. Although p34cdc2 levels are not perturbed after activation of synchronously cycling T cells, cyclin B- and p34cdc2-associated histone H1 kinase activity is persistently elevated. This activation-dependent induction of H1 kinase activity in T cells is associated with a decrease in the phosphotyrosine content of p34cdc2. We also demonstrate that transient inappropriate coexpression of cyclin B with p34cdc2 induces DNA fragmentation in a heterologous cell type. Finally, in T cells, cyclin B-specific antisense oligonucleotides suppress activation-induced cell death but not cell death induced by exposure to dexamethasone. We therefore conclude that a persistent elevation of the level of cyclin B kinase is required for activation-induced programmed T-cell death.  相似文献   
15.
The dipeptides carnosine, homocarnosine and anserine are differentially distributed among the retinas of several vertebrate species. Retinas of birds are rich in anserine while those of frogs have primarily carnosine. Several mammalian species contain only very low levels of homocarnosine. The biological function of these dipeptides is unknown but their presence and synthesis in retina may confound studies of uptake, metabolism and cellular localization of their component amino acids β-alanine, gamma-aminobutyric acid and histidine.  相似文献   
16.
Effect of antitubulin colcemide on polarization of mouse fibroblast-like cells on anisotropic substrate was studied. Such a substrate was obtained by scratching narrow strips in lipid films, adsorbed on the glass. The control cells were seen spread only along the strips, and in 4-6 hours they approached the length of120-150 mcm. In colcemide-containing media, the cells remain in an unspread state for a long time; they extrude their outgrowths both along the strip and perpendicularly to it. Due to frequent refractions of outgrowths, two thirds of colcemide-treated cells were detached from the substrate. Possible mechanisms of these effects of antitubulins are discussed.  相似文献   
17.
A panel of monoclonal antibodies prepared to the chondroitin sulfate proteoglycans of rat brain was used for their immunocytochemical localization and isolation of individual proteoglycan species by immunoaffinity chromatography. One of these proteoglycans (designated 1D1) consists of a major component with an average molecular size of 300 kDa in 7-day brain, containing a 245-kDa core glycoprotein and an average of three 22-kDa chondroitin sulfate chains. A 1D1 proteoglycan of approximately 180 kDa with a 150-kDa core glycoprotein is also present at 7 days, and by 2-3 weeks postnatal this becomes the major species, containing a single 32-kDa chondroitin 4-sulfate chain. The concentration of 1D1 decreases during development, from 20% of the total chondroitin sulfate proteoglycan protein (0.1 mg/g brain) at 7 days postnatal to 6% in adult brain. A 45-kDa protein which is recognized by the 8A4 monoclonal antibody to rat chondrosarcoma link protein copurifies with the 1D1 proteoglycan, which aggregates to a significant extent with hyaluronic acid. A chondroitin/keratan sulfate proteoglycan (designated 3H1) with a size of approximately 500 kDa was isolated from rat brain using monoclonal antibodies to the keratan sulfate chains. The core glycoprotein obtained after treatment of the 3H1 proteoglycan with chondroitinase ABC and endo-beta-galactosidase decreases in size from approximately 360 kDa at 7 days to approximately 280 kDa in adult brain. In 7-day brain, the proteoglycan contains three to five 25-kDa chondroitin 4-sulfate chains and three to six 8.4-kDa keratan sulfate chains, whereas the adult brain proteoglycan contains two to four chondroitin 4-sulfate chains and eight to nine keratan sulfate chains, with an average size of 10 kDa. The concentration of 3H1 increases during development from 3% of the total soluble proteoglycan protein at 7 days to 11% in adult brain, and there is a developmental decrease in the branching and/or sulfation of the keratan sulfate chains. A third monoclonal antibody (3F8) was used to isolate a approximately 500-kDa chondroitin sulfate proteoglycan comprising a 400-kDa core glycoprotein and an average of four 28-kDa chondroitin sulfate chains. In the 1D1 and 3F8 proteoglycans of 7-day brain, 20 and 33%, respectively, of the chondroitin sulfate is 6-sulfated, whereas chondroitin 4-sulfate accounts for greater than 96% of the glycosaminoglycan chains in the adult brain proteoglycans.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   
18.
The binding of epidermal growth factor (EGF) to its receptor induces tyrosine phosphorylation of phospholipase C gamma (PLC gamma), which appears to be necessary for its activation leading to phosphatidyl inositol (PI) hydrolysis. Moreover, EGF-receptor (EGF-R) activation and autophosphorylation results in binding of PLC gamma to the tyrosine phosphorylated carboxy-terminus of the receptor. To gain further insights into the mechanisms and interactions regulating these processes, we have analyzed transfected NIH-3T3 cells expressing two EGF-R carboxy-terminal deletion mutants (CD63 and CD126) with reduced capacity to stimulate PI hydrolysis, Ca2+ rises, and DNA synthesis. In fact, the CD126 mutant lacking 126 carboxy-terminal amino acids, including four tyrosine autophosphorylation sites, was unable to stimulate PI hydrolysis or Ca2+ rise in response to EGF. Surprisingly, EGF binding to the cell lines expressing CD63 or CD126 mutants was followed by similar stimulation of tyrosine phosphorylation of PLC gamma. Our results suggest that although necessary, tyrosine phosphorylation of PLC gamma may not be sufficient for stimulation and PI hydrolysis. It is clear, however, that the carboxy-terminal region of EGF-R is involved in regulation of interactions with cellular targets and therefore plays a crucial role in postreceptor signaling pathways.  相似文献   
19.
Regulation of the microtubule steady state in vitro by ATP.   总被引:16,自引:0,他引:16  
R L Margolis  L Wilson 《Cell》1979,18(3):673-679
ATP increases microtubule steady state assembly and disassembly rates in vitro in a concentration-dependent manner. Bovine brain microtubules, composed of 75% tubulin and 25% high molecular weight microtubule-associated proteins (MAPs), were purified by three cycles of assembly and disassembly in the absence of ATP. When assembled to steady state, these microtubules add dimers at one end and lose them at the other in a unidirectional assembly-disassembly process. In the presence of 1.0 mM ATP the unidirectional flow of tubulin from one end of the microtubules to the other increases as much as 20 fold, as revealed by loss of 3H-GTP from uniformly labeled microtubules under GTP chase conditions and by the rate of disassembly following addition of 50 microM podophyllotoxin. UTP, CTP and 5' adenylylimidodiphosphate (AMP-PNP) cannot substitute for ATP in producing this effect. Furthermore, the increase in steady state flow rate persists afer ATP is removed. Thus microtubules assembled in ATP and centrifuged through sucrose cushions to separate them from nucleotides continue to exhibit increased rates in the next assembly cycle in the absence of ATP. It is possible that an ATP-dependent microtubule protein kinase is responsible for the observed increase in tubulin flow rate. A kinase activity associated with brain MAPs has been reported to be cAMP-dependent (Sloboda et al., 1975). We have found an adenylate cyclase activity associated with these microtubules. Whether the adenylate cyclase is a contaminant or due to a specific microtubules-associated protein, and whether its activity is functionally linked to the increased rate of assembly and disassembly in the presence of ATP, remain to be determined.  相似文献   
20.
Abstract— Antisera against the rat olfactory marker protein were prepared by injection of the homogeneous protein into a goat and a rabbit. When the antisera were tested by immunodiffusion against olfactory tissue extracts, many but not all mammalian species cross-reacted against these antisera. Immunoprecipitin titrations with the goat antiserum generally showed higher cross-reactivity against olfactory extracts from species more closely related to the rat. Human olfactory bulb extracts and non-mammalian olfactory tissue extracts did not cross-react with the antisera by either immunodiffusion tests or immunoprecipitin titrations, however, they did cross-react when tested by a competitive binding radioimmunoassay using tritium-labelled purified rat protein and the goat antibody. The olfactory marker protein which is an example of a brain protein specific to one cell, the olfactory chemoreceptor neuron, has a very wide species distribution, being present in rat, mouse, hamster, guinea-pig, sheep, cow, rabbit, pig, dog, man, frog and garfish. Therefore it presumably plays an important and unique role related to the function of this primary chemosensory neuron.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号